原创

宽带下HBF系统的信道估计,基于码本——《Channel Estimation for Hybrid Architecture-Based Wideband Millimeter Wave Syst》

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://zhuyulab.blog.csdn.net/article/details/100748877

关于 《Channel Estimation for Hybrid Architecture-Based Wideband Millimeter Wave System》一文的中文笔记。

简介

问题背景


本文主要讲述了几种基于码本的信道估计方式,难能可贵地考虑了宽带的情况——大部分的相关工作考虑的是窄带系统,然而宽带系统更符合毫米波的实际情况。因此,本文值得一读。

系统结构

在这里插入图片描述
这个HBF的结构图和之前一样,不清楚的读者可以去看前几篇博文,这里就不再赘述了。
基于此结构,我们可以推导接收端最终的信号为:
y[n]=ρd=0Nc1WHdFs[nd]+Wv[n] \mathbf{y}[n]=\sqrt{\rho} \sum_{d=0}^{N_{c}-1} \mathbf{W}^{*} \mathbf{H}_{d} \mathbf{F} \mathbf{s}[n-d]+\mathbf{W}^{*} \mathbf{v}[n]
W\mathbf{W}F\mathbf{F}分别是发送端和接收端的波束成形矩阵。
其中,Hd\mathbf{H}_d是:
Hd==1Npαp(dTsτ)aR(ϕ)aT(θ) \mathbf{H}_{d}=\sum_{\ell=1}^{N_{\mathrm{p}}} \alpha_{\ell} p\left(d T_{\mathrm{s}}-\tau_{\ell}\right) \mathbf{a}_{\mathrm{R}}\left(\phi_{\ell}\right) \mathbf{a}_{\mathrm{T}}^{*}\left(\theta_{\ell}\right)
这个要详细说明一下,首先,NcN_c代表的是时延扩展的总长度,也就是说延时最大的那条件的时延是NcN_cHd\mathbf{H}_\mathrm{d}代表的则是延时为dTsdT_s的信道(TsT_s代表一个符号周期),需要注意的是由于只有有限的多径数,所以大部分的Hd\mathbf{H}_\mathrm{d}是没有值的。这一点是通过 p(dTsτ)p\left(d T_{\mathrm{s}}-\tau_{\ell}\right)来体现的。p(τ)p(\tau)代表的是脉冲成型在τ\tau处的响应,可以简单理解为只有p(0)=1p(0)=1,在其余点全为0。(实际中可能会用根升余弦滤波器啥的来近似代替,但我们现在暂时以这样理解)。那么,只有当dTs=τd T_{\mathrm{s}}=\tau时,该Hd\mathbf{H}_\mathrm{d}才有值,也就是延时刚好为dTsd T_{\mathrm{s}}的那条径的值。aR(ϕ)aT\mathbf{a}_{\mathrm{R}}\left(\phi_{\ell}\right) \mathbf{a}_{\mathrm{T}}^{*}这一项就是基本的ULA天线阵列的响应公式,在此也不再赘述。
于是,Hd\mathbf{H}_\mathrm{d}可表示为:
Hd=ARΔdAT \mathbf{H}_{d}=\mathbf{A}_{\mathrm{R}} \Delta_{d} \mathbf{A}_{\mathrm{T}}^{*}
其中Δd\Delta_{d}代表了一个对角阵,对角元素为αp(dTSτ)\alpha_{\ell} p\left(d T_{\mathrm{S}}-\tau_{\ell}\right)。进一步地,通过矩阵列化公式,有
vec(Hd)=(ATAR)[α1p(dTsτ1)α2p(dTsτ2)αNpp(dTsτNp)] \operatorname{vec}\left(\mathbf{H}_{d}\right)=\left(\overline{\mathbf{A}}_{\mathrm{T}} \circ \mathbf{A}_{\mathrm{R}}\right)\left[\begin{array}{c}{\alpha_{1} p\left(d T_{\mathrm{s}}-\tau_{1}\right)} \\ {\alpha_{2} p\left(d T_{\mathrm{s}}-\tau_{2}\right)} \\ {\vdots} \\ {\alpha_{N_{\mathrm{p}}} p\left(d T_{\mathrm{s}}-\tau_{N_{\mathrm{p}}}\right)}\end{array}\right]

时域信道估计算法

首先,本文使用的方法中只用模拟阵来估计,默认数字阵为单位阵,不做任何操作,即有:

rm[n]=d=0Nc1HdFmsm[nd]+vm[n] \mathbf{r}_{m}[n]=\sum_{d=0}^{N_{c}-1} \mathbf{H}_{d} \mathbf{F}_{m} \mathbf{s}_{m}[n-d]+\mathbf{v}_{m}[n]
其中 FmCNt×NRF\mathbf{F}_{m} \in \mathbb{C}^{N_{t} \times N_{\mathrm{RF}}}sm[n]CNRF×1\mathbf{s}_{m}[n] \in \mathbb{C}^{N_{\mathrm{RF}} \times 1}为第mm个训练序列。
sm=[00Nc1sm[1]sm[N]] \mathbf{s}_{m}=\left[\underbrace{0 \cdots 0}_{N_{\mathrm{c}}-1} \mathbf{s}_{m}[1] \cdots \mathbf{s}_{m}[N]\right]
NcN_c个为零前缀(ZP),用于防止相邻帧之间的干扰。
如此,可以把N个符号周期内接收到的符号表示为:
ym=[ym[1]ym[2]ym[N]]=Sm(INcFmT)Wmhc+em \mathbf{y}_{m}=\left[\begin{array}{c}{\mathbf{y}_{m}[1]} \\ {\mathbf{y}_{m}[2]} \\ {\vdots} \\ {\mathbf{y}_{m}[N]}\end{array}\right]=\underbrace{\mathbf{S}_{m}\left(\mathbf{I}_{N_{c}} \otimes \mathbf{F}_{m}^{\mathrm{T}}\right) \otimes \mathbf{W}_{m}^{*} \mathbf{h}_{\mathbf{c}}+\mathbf{e}_{m}}
其中,
Sm=[smT[1]00smT[2]smT[1]smT[N]smT[NNc+1]] \mathbf{S}_{m}=\left[\begin{array}{cccc}{\mathbf{s}_{m}^{\mathrm{T}}[1]} & {0} & {\cdots} & {0} \\ {\mathbf{s}_{m}^{\mathrm{T}}[2]} & {\mathbf{s}_{m}^{\mathrm{T}}[1]} & {\cdots} & {\cdot} \\ {\vdots} & {\vdots} & {\ddots} & {\vdots} \\ {\mathbf{s}_{m}^{\mathrm{T}}[N]} & {\cdots} & {\cdots} & {\mathbf{s}_{m}^{\mathrm{T}}\left[N-N_{\mathrm{c}}+1\right]}\end{array}\right]
这个式子笔者推过,没有问题。进一步地使用列化经典公式:
vec(ABC)=(CTA)vec(B) \operatorname{vec}(\mathbf{A B C})=\left(\mathbf{C}^{\mathrm{T}} \otimes \mathbf{A}\right) \operatorname{vec}(\mathbf{B})
有:
在这里插入图片描述
再根据之前对Hd\mathbf{H}_\mathrm{d}的分解,可得:
ym=Φtd(m)(INcATAR)[γ1,0γNp,0γ1,(Nc1)γNp,(Nc1)]+e \mathbf{y}_{m}=\Phi_{\mathrm{td}}^{(m)}\left(\mathbf{I}_{N_{\mathrm{c}}} \otimes \overline{\mathbf{A}}_{\mathrm{T}} \circ \mathbf{A}_{\mathrm{R}}\right)\left[\begin{array}{c}{\gamma_{1,0}} \\ {\vdots} \\ {\gamma_{N_{\mathrm{p}}, 0}} \\ {\vdots} \\ {\gamma_{1,\left(N_{\mathrm{c}}-1\right)}} \\ {\vdots} \\ {\gamma_{N_{\mathrm{p}}},\left(N_{\mathrm{c}}-1\right)}\end{array}\right]+\mathbf{e}

这个形式就可以写成稀疏问题了,如下:

ym=Φtd(m)(INcAtxArx)x^td+em \mathbf{y}_{m}=\Phi_{\mathrm{td}}^{(m)}\left(\mathbf{I}_{N_{\mathrm{c}}} \otimes \overline{\mathbf{A}}_{\mathrm{tx}} \otimes \mathbf{A}_{\mathrm{rx}}\right) \hat{\mathbf{x}}_{\mathrm{td}}+\mathbf{e}_{m}
其中,Atx\mathbf{A}_{\mathrm{tx}}Arx\mathbf{A}_{\mathrm{rx}}是对应的码本,由GtG_t个量化的aT(θ~x)\mathbf{a}_{\mathrm{T}}\left(\tilde{\theta}_{x}\right)GrG_r个量化的aR(θ~x)\mathbf{a}_{\mathrm{R}}\left(\tilde{\theta}_{x}\right)组成。x^td\hat{\mathbf{x}}_{\mathrm{td}}的维度为NcGrGt×1N_{\mathrm{c}} G_{\mathrm{r}} G_{\mathrm{t}} \times 1

详细说明下这个改写为稀疏过程的思路,首先假定发送和接收的角度是由码本中量化的角度里挑选的。这里当然会涉及一个精确度的问题,误差肯定是有的,但是不急。也就是说,一条路径可能有Gt×GrG_t\times G_r种角度组成,而我们要估计的多径信道的径,就是在这Gt×GrG_t\times G_r中找。而每一径的延时又有NcN_c种选择,综合了角度和延时,准确描述信道的一条径,就总共有NcGrGtN_{\mathrm{c}} G_{\mathrm{r}} G_{\mathrm{t}}种可能性。这样一来,x^td\hat{\mathbf{x}}_{\mathrm{td}}就是一个极其稀疏的向量,而他的非零项就对应了实际的信道径。

按理到这一步,已经可以用压缩感知进行求解了,但作者进行了进一步的推导,先有:pd\mathbf{p}_d,每个元素为 pd(n)=prc((dnNcGc)Ts)p_{d}(n)=p_{\mathrm{rc}}\left(\left(d-n \frac{N_{\mathrm{c}}}{G_{\mathrm{c}}}\right) T_{\mathrm{s}}\right),for d=1,2,,Ncd=1,2, \ldots, N_{\mathrm{c}} and n=1,2,,Gcn=1,2, \ldots, G_{\mathrm{c}}。于是有

ym=Φtd(m)(INcAtxArx)Γxtd+em\mathbf{y}_{m}=\Phi_{\mathrm{td}}^{(m)}\left(\mathbf{I}_{N_{\mathrm{c}}} \otimes \overline{\mathbf{A}}_{\mathrm{tx}} \otimes \mathbf{A}_{\mathrm{rx}}\right) \Gamma \mathbf{x}_{\mathrm{td}}+\mathbf{e}_{m}
其中
Γ=[IGrGtp1TIGrGtp2TIGrGtpNcT] \Gamma=\left[\begin{array}{c}{\mathbf{I}_{G_{\mathrm{r}} G_{\mathrm{t}}} \otimes \mathbf{p}_{1}^{\mathrm{T}}} \\ {\mathbf{I}_{G_{\mathrm{r}} G_{\mathrm{t}}} \otimes \mathbf{p}_{2}^{\mathrm{T}}} \\ {\vdots} \\ {\mathbf{I}_{G_{\mathrm{r}} G_{\mathrm{t}}} \otimes \mathbf{p}_{N_{\mathrm{c}}}^{\mathrm{T}}}\end{array}\right]
那么xtdCGcGrGt×1\mathbf{x}_{\mathrm{td}} \in \mathbb{C}^{G_{\mathrm{c}} G_{\mathrm{r}} G_{\mathrm{t}} \times 1}就是一个NpN_p-稀疏的稀疏向量。我的理解是这样的,角度的组合还是Gt×GrG_t\times G_r种没问题,但是延时的选择变成了更加细分的pdp_{d},而之前只能是整数延时。这样可以提高延时估计的精确度。最后,令
Φtd=[S1(INcFfT)W1S2(INcF2)W2SM(INcFMT)WM]CNMNRF×NcNrNt \Phi_{\mathrm{td}}=\left[\begin{array}{c}{\mathbf{S}_{1}\left(\mathbf{I}_{N_{\mathrm{c}}} \otimes \mathbf{F}_{\mathrm{f}}^{\mathrm{T}}\right) \otimes \mathbf{W}_{1}^{*}} \\ {\mathbf{S}_{2}\left(\mathbf{I}_{N_{\mathrm{c}}} \otimes \mathbf{F}_{2}^{\dagger}\right) \otimes \mathbf{W}_{2}^{*}} \\ {\vdots} \\ {\mathbf{S}_{M}\left(\mathbf{I}_{N_{\mathrm{c}}} \otimes \mathbf{F}_{M}^{\mathrm{T}}\right) \otimes \mathbf{W}_{M}^{*}}\end{array}\right] \in \mathbb{C}^{N M N_{\mathrm{RF}} \times N_{\mathrm{c}} N_{\mathrm{r}} N_{\mathrm{t}}}

Ψtd=(INcAtxArx)Γ \Psi_{\mathrm{td}}=\left(\mathbf{I}_{N_{\mathrm{c}}} \otimes \overline{\mathbf{A}}_{\mathrm{tx}} \otimes \mathbf{A}_{\mathrm{rx}}\right) \Gamma
可得,
ytd=ΦtdΨtdxtd+e \mathbf{y}_{\mathrm{td}}=\Phi_{\mathrm{td}} \Psi_{\mathrm{td}} \mathbf{x}_{\mathrm{td}}+\mathbf{e}

其中,估计过程中用到的beamformers Fm,Wm,m=1,2, ,M\mathbf{F}_{m}, \mathbf{W}_{m}, m=1,2, \cdots, M是随机取的量化相位。

然后,通过把零范数放缩为一范数,优化问题可写为:

minxtdxtd1 such that ytdΦtdΨtdxtd2ϵ \min _{\mathbf{x}_{\mathrm{td}}}\left\|\mathbf{x}_{\mathrm{td}}\right\|_{1} \quad \text { such that } \quad\left\|\mathbf{y}_{\mathrm{td}}-\Phi_{\mathrm{td}} \Psi_{\mathrm{td}} \mathbf{x}_{\mathrm{td}}\right\|_{2} \leq \epsilon

OMP算法可以用于解决此类问题,如果信道的径数ll已知,可以直接做ll次迭代求解。 如果未知,则迭代到一定范围后停止。一般取,ϵ=E[ee]\epsilon=\mathbb{E}\left[\mathbf{e}^{*} \mathbf{e}\right]

频域估计方法

接下来,作者又介绍了频域的方法,其实和时域大同小异。类似地,通过FFT,可以把频域信号写为:

y˘m[k]=WmH[k]Fms˘m[k]+e˘m[k] \breve{y}_{m}[k]=\mathbf{W}_{m}^{*} \boldsymbol{H}[k] \mathbf{F}_{m} \breve{\boldsymbol{s}}_{m}[k]+\breve{\boldsymbol{e}}_{m}[k]
kk 代表的是子载波index。
有:
H[k]==1Npαβk,aR(ϕ)aT(θ) H[k]=\sum_{\ell=1}^{N_{\mathrm{p}}} \alpha_{\ell} \beta_{k, \ell} \mathbf{a _ { \mathrm { R } }}\left(\phi_{\ell}\right) \mathbf{a}_{\mathrm{T}}^{*}\left(\theta_{\ell}\right)
其中,βk,=d=0Nc1p(dTsτ)ej2πkdR\beta_{k, \ell}=\sum_{d=0}^{N_{c}-1} p\left(d T_{\mathrm{s}}-\tau_{\ell}\right) e^{-\mathrm{j} \frac{2 \pi k d}{R}},然后,该问题可转化为稀疏问题求解:
vec(y˘m[k])=Φfd(m)[k](AtxArx)xˇ[k]+e˘m[k] \operatorname{vec}\left(\breve{\boldsymbol{y}}_{m}[k]\right)=\Phi_{\mathrm{fd}}^{(m)}[k]\left(\overline{\mathbf{A}}_{\mathrm{tx}} \otimes \mathbf{A}_{\mathrm{rx}}\right) \check{x}[k]+\breve{e}_{m}[k]
其中, xˇ[k]CGrGt×1\check{x}[k] \in \mathbb{C}^{G_{\mathrm{r}} G_{\mathrm{t}} \times 1}是个NpN_p-稀疏的向量。

结合估计方法

总结一下,时域和频域的估计方法其实都是在给定的码本内用OMP方法去接一个稀疏问题。

时域方法: 可以直接解出时域所有的信道时间响应,缺点在于整个稀疏问题过大,增大了算法复杂度。

频域方法:每个子载波上的估计问题很小,较易求解 ,但想完全恢复所有CSI要求K次。

结合方法:用频域方法求解角度信息,再用时域方法求解完整CSI。
首先,可以选取P个子载波,PKP\le K。对其分别进行频域估计,估计出角度值。将估出的角度值作为字典,再使用时域估计,估计完整的CSI。一言以蔽之,先用频域估计,缩小字典大小,再用时域估计解决问题。

0 个人打赏
文章最后发布于: 2019-09-15 21:20:46
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

打赏

Fudan_Zhuyulab

“你的鼓励将是我创作的最大动力”

5C币 10C币 20C币 50C币 100C币 200C币

分享到微信朋友圈

×

扫一扫,手机浏览