MISO系统的智能反射面信道估计:级联信道与压缩感知

MISO系统的智能反射面信道估计:级联信道与压缩感知

前言

原文:《Compressed Channel Estimation and Joint Beamforming for Intelligent Reflecting Surface-Assisted Millimeter Wave Systems 》
地址:https://arxiv.org/abs/1911.07202

这篇文章考虑的是智能反射面(IRS)辅助的mmWave MISO系统的信道估计问题。作者将BS-IRS、IRS-UE两个信道级联成一个等效信道,利用级联信道的稀疏结构将估计值转化为压缩感知问题。

系统模型

在这里插入图片描述
考虑到实际很多情况下,基站到用户的直射路径是被障碍物遮蔽的,本文忽略了直接链路,估计的信道有:基站到反射面GG、反射面到用户hr{h_r}

考虑下行链路估计,第t时刻,用户端接收到的信号:
在这里插入图片描述
在这里插入图片描述
这表示IRS的相移矩阵,θm{\theta _m}βm{\beta _m}表示IRS第m个反射元素的相移和幅值系数,为了简化问题,假设βm{\beta _m}=1。

式中的Hdiag(hrH)GH \triangleq diag(h_r^H)G是级联信道,在用户端单天线的情况下,hr{h_r}信道是一个向量形式,因此可以做这样的变换。如果用户端是多天线,信道是矩阵的情况下就行不通了。

信道模型

考虑窄带的情况并且IRS为UPA情形,BS-IRS信道可以如下建模:
在这里插入图片描述
在这里插入图片描述
考虑到mmWave信道的稀疏性,路径L数很少,G可以这样表示:
在这里插入图片描述
这里的FL{F_L}矩阵每一列都是由取不同ϕl{\phi _l}取值的t(ϕl){\partial _t}({\phi _l})组成,Fx{F_x}Fy{F_y}同理。\otimes表示克罗内克积,\sum\limits_{}^{} {}是路径增益对应的稀疏矩阵。

接下来反射面到用户信道的建模与上面类似:
在这里插入图片描述
在这里插入图片描述

级联信道

在这里插入图片描述
上式包括克罗内克积和Khatri-Rao积的相关运算,具体知识可查阅张贤达老师的《矩阵分析与应用》。

总之,经过一系列运算后,得到了级联信道H的稀疏表示。接下来,文章中还对这种稀疏表示进行了简化,去除了大量的冗余列。(具体简化的证明可参照原文后的附录)

信道估计

接下来便是利用级联信道的稀疏结构将估计值转化为压缩感知问题。
在这里插入图片描述
在这里插入图片描述
上面这个式子已经把信道估计问题转化为稀疏信号恢复的问题,许多经典压缩感知算法,如OMP、BP等都可以用来估计稀疏信号X。

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读