原创

深度通信网络专栏(3)|自编码器:An Introduction to Deep Learning for the Physical Layer

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://zhuyulab.blog.csdn.net/article/details/90648921

本文地址:https://arxiv.org/pdf/1702.00832.pdf
GitHub地址:https://github.com/musicbeer/Deep-Learning-for-the-Physical-Layer

前言

深度通信网络专栏|自编码器:这一专栏原计划整理18-19年的论文,这篇虽然是17年的论文,但是首次提出自编码器的概念。现在回看内容比较简单易懂,但因为其引用量很高,其中提出的自编码器的概念和将专家领域知识与NN结合RTN网络结构被多篇文章引用,因此在这里也做个“读书笔记”,方便日后回看。这里仅记录论文中与自编码器相关的部分。

文章主要贡献

提出将通信系统理解为自编码器 ,在单进程中联合优化发送接收端 ,将这一思路拓展到MIMO系统,并提出RTNs(radio transformer networks)的概念,将ML模型与专家领域知识结合。

全文概述

siso

在这里插入图片描述
处理过程:
(1) 发送机:将信号s(kbits)编码成具有更高传输鲁棒性的表达式X(n维向量)并发送
(2) 信道:AWGN干扰x,输出y
(3) 接收机:根据接收y译码出M种可能信号的概率,根据最大概率重构信号
在这里插入图片描述
神经网络结构如上,输入s为onehot编码,信道为方差固定的高斯信道,在snr=7db时训练,损失函数使用交叉熵,发送NN的归一化层保证x满足功率约束,接收端NN输出概率。网络参数设置如下:
在这里插入图片描述
snr-ber如下:autoencoder(8,8)的性能优于uncoded bpsk(8,8),说明NN学习到了联合编码调制方案,实现了编码增益。在这里插入图片描述
编码结果如下:
在这里插入图片描述

mimo

考虑2发2收的情况:
在这里插入图片描述
与siso情况相比,信道引进了干扰

神经网络实现的过程为:
发送NN1将s1编码为x1,发送NN2将s2编码为x2
将x1+x2+n1输入接收NN1,得到估计的s1
将x1+x2+n2输入接收NN2,得到估计的s2

NN1和NN2采用与siso一样的层数及神经元设置 两个自编码器分别优化,
损失函数设置为L~=αL~1+(1α)L~2\tilde{L}=\alpha \tilde{L}_{1}+(1-\alpha) \tilde{L}_{2},其中α可变,αt+1=L~1(θt)L~1(θt)+L~2(θt),t>0\alpha_{t+1}=\frac{\tilde{L}_{1}\left(\boldsymbol{\theta}_{t}\right)}{\tilde{L}_{1}\left(\boldsymbol{\theta}_{t}\right)+\tilde{L}_{2}\left(\boldsymbol{\theta}_{t}\right)}, \quad t>0

ber-snr曲线如下:
在这里插入图片描述

对比参考曲线为22k/nQAM2^{2 k / n}-\mathrm{Q} \mathrm{AM}+ time-sharing

星座图如下:
在这里插入图片描述

( a)性能与bpsk相等
( b)性能与4qam相等
( c)性能比4qam好0.7db
( d)性能比16qam好1db

因为对比曲线的选取原因,这样的结果也在情理之中,当采用(4,4)或(4,8)时,对比曲线相当于使用了重复编码,这一的方式并不能充分利用自由度,因此神经网络能达到更好的性能。

RTN的引入

在这里插入图片描述
用以上结构代替之前的接收机结构,先将y输入参数估计网络,估计出有用参数(如频偏、符号时间、脉冲响应等),再利用这些NN估计出来的参数对接收信号进行校正,最后输入判别网络。这一结构很好地将NN与传统的已知算法结合,实现了神经网络与专家领域知识的融合,实现了更低的ber,加快了训练速度。
仿真结果:
在这里插入图片描述

文章最后发布于: 2019-05-28 22:58:07
展开阅读全文
0 个人打赏
私信求帮助

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览